四棱锥 A - B C D E 中,底面 B C D E 为矩形,侧面 A B C ⊥ 底面 B C D E , B C = 2 , C D = 2 , A B = A C . (Ⅰ)证明: A D ⊥ C E ; (Ⅱ)设侧面 A B C 为等边三角形,求二面角 C - A D - E 的大小.
(1)设,求的值; (2)已知,且,求的值.
已知函数,设曲线在与轴交点处的切线为,为的导函数,满足. (1)求; (2)设,,求函数在上的最大值; (3)设,若对于一切,不等式恒成立,求实数的取值范围.
设是同时符合以下性质的函数组成的集合: ①,都有;②在上是减函数. (1)判断函数和()是否属于集合,并简要说明理由; (2)把(1)中你认为是集合中的一个函数记为,若不等式对任意的总成立,求实数的取值范围.
(1)设扇形的周长是定值为,中心角.求证:当时该扇形面积最大; (2)设.求证:.
已知定义域为的函数是奇函数. (1)求的值; (2)判断函数的单调性,并证明.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号