游客
题文

四棱锥 A - B C D E 中,底面 B C D E 为矩形,侧面 A B C 底面 B C D E B C = 2 C D = 2 A B = A C .
(Ⅰ)证明: A D C E
(Ⅱ)设侧面 A B C 为等边三角形,求二面角 C - A D - E 的大小.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=,圆O的半径为3,求OA的长.

设函数
(I)若函数f(x)在x=1处与直线y=相切,
①求实数a,b的值;
②求函数f(x)在[土,e]上的最大值.
(II)当b=0时,若不等式f(x)≥m+x对所有的都成立,求实数m的取值范围,

已知椭圆右顶点与右焦点的距离为,短轴长为
(I)求椭圆的方程;
(Ⅱ)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为求直线AB的方程。

某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1)和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人。

(I)试问在抽取的学生中,男、女生各有多少人?
(II)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?

(Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率。
参考公式:
参考数据:

如图l,在正方形ABCD中,AB =2,E是AB边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点.将ADAE,ADCF折起,使A、C重合于A点,构成如图2所示的几何体.
(I)求证:A′D⊥面A′EF;
(Ⅱ)试探究:在图1中,F在什么位置时,能使折起后的几何体中EF//平面AMN,并给出证明.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号