已知点分别是射线
,
上的动点,
为坐标原点,且
的面积为定值2.
(I)求线段中点
的轨迹
的方程;
(II)过点作直线
,与曲线
交于不同的两点
,与射线
分别交于点
,若点
恰为线段
的两个三等分点,求此时直线
的方程.
如图,在四棱锥
中,
为等边三角形,平面
平面
,
,
,
,
,
为
的中点.
(Ⅰ)求证:
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)若
平面
,求
的值.
,
两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:
组:10,11,12,13,14,15,16
组:12,13,15,16,17,14,
假设所有病人的康复时间互相独立,从,
两组随机各选1人,
组选出的人记为甲,
组选出的
人记为乙.
(Ⅰ)求甲的康复时间不少于14天的概率;
(Ⅱ)如果,求甲的康复时间比乙的康复时间长的概率;
(Ⅲ)当为何值时,
,
两组病人康复时间的方差相等?(结论不要求证明)
已知函数
.
(Ⅰ)求
的最小正周期;
(Ⅱ)求
在区间
上的最小值.
(本小题满分14分) 已知函数.
(1)试讨论函数在区间
上的单调性;
(2)若当时,函数
的取值范围恰为
,求实数
的值.
(本小题满分14分) 已知命题:在
上定义运算
:
.不等式
对任意实数
恒成立;命题
:若不等式
对任意的
恒成立.若
为假命题,
为真命题,求实数
的取值范围.