心理学家分析发现视觉和空间能力与性别有关, 某数学兴趣小组为了 验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学 (男30女20), 给所有同学几何题和代数题各一题, 让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
(Ⅰ)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(Ⅱ)经过多次测试后,甲每次解答一道几何题所用的时间在5—7分钟,乙每次解答一道几何题所用
的时间在6—8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(Ⅲ)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、 乙两女
生被抽到的人数为X, 求X的分布列及数学期望E(X) .
附表及公式
如图,在四棱锥中,底面
为直角梯形,AD‖BC,
,平面
⊥底面
,Q为AD的中点,M是棱PC上的点,PA=PD=AD=2,BC=1,CD=
.
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C为,设PM=t
MC,试确定t的值.
设数列{an}满足:a1=1,an+1=3an,n∈N*.设Sn为数列{bn}的前n项和,已知b1≠0,2bn–b1=S1•Sn,n∈N*.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设,求数列{cn}的前n项和Tn;
(Ⅲ)证明:对任意n∈N*且n≥2,有+
+…+
<
.
【选修4-5:不等式选讲】设函数
(1)若,证明:
;
(2)若,求a的取值范围.
【选修4-2:极坐标与参数方程】已知直线n的极坐标是,圆A的参数方程是
(θ是参数)
(1)将直线n的极坐标方程化为普通方程;
(2)求圆A上的点到直线n上点距离的最小值.