已知椭圆的离心率为,且其焦点F(c,0)(c>0)到相应准线l的距离为3,过焦点F的直线与椭圆交于A、B两点。
(1)求椭圆的标准方程;
(2)设M为右顶点,则直线AM、BM与准线l分别交于P、Q两点,(P、Q两点不重合),求证:
已知椭圆的对称中心为原点
,焦点在
轴上,左、右焦点分别为
,且
,点
在该椭圆上.
(1)求椭圆的方程;
(2)过点的直线
与椭圆
相交于
两点,若
的面积为
,求以
为圆心且与直线
相切的圆的方程.
在三棱柱中,侧面
为矩形,
,
为
的中点,
与
交于点
,
侧面
.
(1)证明:;
(2)若,求三棱柱
的体积.
正项数列前
项和
满足
且
成等比数列,求
.
如图,为平面的一组基向量,
,
,
与
交与点
(1)求关于
的分解式;(2)设
,
,求
;
(3)过任作直线
交直线
于
两点,设
,
()求
的关系式。
已知对任意平面向量,把
绕其起点沿逆时针方向旋转
角得到向量
,叫做把点
绕点
逆时针方向旋转角得到点
。
(1)已知平面内点,点
。把点
绕点
沿逆时针旋转
后得到点
,求点
的坐标;
(2)设平面内直线上的每一点绕坐标原点沿逆时针方向旋转
后得到的点组成的直线方程是
,求原来的直线
方程。