在平面直角坐标系xOy中,已知点A(-1, 0)、B(1, 0), 动点C满足条件:△ABC的周长为2+2.记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)经过点(0, )且斜率为k的直线l与曲线W有两个不同的交点P和Q,
求k的取值范围;
(Ⅲ)已知点M(,0),N(0, 1),在(Ⅱ)的条件下,是否存在常数k,使得向量
与
共线?如果存在,求出k的值;如果不存在,请说明理由.
已知定点A(0,1)、B(0,-1)、C(1,0),动点P满足·
=k|
|2.
(1) 求动点P的轨迹方程,并说明方程表示的曲线.
(2) 当k=2时,求|2+
|的最大值和最小值
如图,几何体为正四棱锥,几何体
为正四面体.、
(1)求证:;
(2)求与平面
所成角的正弦值.
已知函数
其中
其中,若
相邻两对称轴间的距离不小于
。
(I)求的取值范围;
(Ⅱ)中,
分别是角
的对边,
当最大时,
=1,求
的面积
(本小题满分14分)
从椭圆+
=1(a>b>0)上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且它的长轴端点A及短轴端点B的连线AB平行于OM.
(Ⅰ)求椭圆的离心率 ;
(Ⅱ)若b=2,设Q是椭圆上任意一点,F2是右焦点,求△F1QF2的面积的最大值;
(Ⅲ)当QF2^AB时,延长QF2与椭圆交于另一点P,若DF1PQ的面积为20(Q是椭圆上的点),求此椭圆的方程。
(本小题满分12分)
设函数,曲线
在点(2,
(2))处的切线方程为
(Ⅰ)求的解析式;
(Ⅱ)若对一切
恒成立,求
的取值范围;
(Ⅲ)证明:曲线上任一点处的切线与直线
和直线
所围成的三角形面积为一值,并求此定值。