(本小题满分12分)如图,在四棱锥V—ABCD中,底面ABCD是矩形,侧棱VA⊥底面ABCD,E、F、G分别为VA、VB、BC的中点。(I)求证:平面EFG//平面VCD; (II)当二面角V—BC—A、V—DC—A分别为45°、30°时,求直线VB与平面EFG所成的角。
(本小题满分14分)
已知函数
在
处有极小值
。
(1)求函数
的解析式;
(2)若函数
在
只有一个零点,求
的取值范围。
(本小题满分14分)
如图,在
中,
,以
、
为焦点的椭圆恰好过
的中点
。
(1)求椭圆的标准方程;
(2)过椭圆的右顶点
作直线
与圆
相交于
、
两点,试探究点
、
能将圆
分割成弧长比值为
的两段弧吗?若能,求出直线
的方程;若不能,请说明理由.
(本小题满分14分)
已知数列
的前
项和
满足
,等差数列
满足
,
。
(1)求数列
、
的通项公式;
(2)设
,数列
的前
项和为
,问
>
的最小正整数
是多少?
(本小题满分14分)
如图的几何体中,
平面
,
平面
,△
为等边三角形
,
为
的中点.
(1)求证:
平面
;
(2)求证:平面
平面
。
(本小题满分12分)
甲、乙二名射击运动员参加今年深圳举行的第二十六届世界大学生夏季运动会的预选赛,他们分别射击了4次,成绩如下表(单位:环):
| 甲 |
5 |
6 |
9 |
10 |
| 乙 |
6 |
7 |
8 |
9 |
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(2)现要从中选派一人参加决赛,你认为选派哪位运动员参加比较合适?请说明理由.