学校有线网络同时提供A、B两套校本选修课程。A套选修课播40分钟,课后研讨20分钟,可获得学分5分;B套选修课播32分钟,课后研讨40分钟,可获学分4分。全学期20周,网络每周开播两次,每次均为独立内容。学校规定学生每学期收看选修课不超过1400分钟,研讨时间不得少于1000分钟。两套选修课怎样合理选择,才能获得最好学分成绩?
(本小题满分12分)如图1,在矩形中,
,
,将
沿矩形的对角线
翻折,得到如图2所示的几何体
,使得
=
.
(Ⅰ)求证:;
(Ⅱ)若在上存在点
,使得
,求二面角
的余弦值.
(本小题满分12分)数列的各项均为正数,
为其前
项和,对于任意
,总有
成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,数列
的前
项和为
,求证:
.
设集合,集合
,
集合中满足条件“
”的元素个数记为
.
(1)求和
的值;
(2)当时,求证:
.
如图,平行四边形所在平面与直角梯形
所在平面互相垂直,且
,
为
中点.
(1)求异面直线与
所成的角;
(2)求平面与平面
所成的二面角(锐角)的余弦值.
已知圆的极坐标方程是
,以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
是参数).若直线
与圆
相切,求正数
的值.