已知函数的图像过点P(-1,2),且在点P处的切线恰好与直线
垂直。
(1)求函数的解析式;
(2)若函数在区间
上单调递增,求实数m的取值范围。
(本小题满分14分)甲、乙两间商店购进同一种商品的价格均为每件30元,销售价均为每件50元.根据前5年的有关资料统计,甲商店这种商品的年需求量服从以下分布:
![]() |
10 |
20 |
30 |
40 |
50 |
![]() |
0.15 |
0.20 |
0.25 |
0.30 |
0.10 |
乙商店这种商品的年需求量服从二项分布
.
若这种商品在一年内没有售完,则甲商店在一年后以每件25元的价格处理;乙商店一年后剩下的这种商品第1件按25元的价格处理,第2件按24元的价格处理,第3件按23元的价格处理,依此类推.今年甲、乙两间商店同时购进这种商品40件,根据前5年的销售情况,请你预测哪间商店的期望利润较大?
(本小题满分14分)如图某一几何体的展开图,其中是边长为6的正方形,
,
,
,点
、
、
、
及
、
、
、
共线.(Ⅰ)沿图中虚线将它们折叠起来,使
、
、
、
四点重合为点
,请画出其直观图;
(Ⅱ)求二面角的大小;(Ⅲ)试问需要几个这样的几何体才能拼成一个棱长为6的正方体
?
(本小题满分12分)已知函数,
.
(Ⅰ)当时,求函数
的单调区间;(Ⅱ)设函数
在区间
内是减函数,求
的取值范围.
(本小题满分12分)在中,
,
,
.
(Ⅰ)求的值;(Ⅱ)求
的值.
(本小题满分14分)设数列的各项都是正数,且对任意
,都有
,记
为数列
的前
项和.(Ⅰ)求数列
的通项公式;(Ⅱ)若
(
为非零常数,
),问是否存在整数
,使得对任意
,都有
.