在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为A(-1,0),B(1,0),平面
内两点G,M同时满足下列条件①+
+
=0;②|
|=|
|=|
|;③
∥
.(Ⅰ)求△ABC的顶点C的轨迹方程;(Ⅱ)是否存在过点P(3,0)的直线l与(Ⅰ)中轨迹交于E、F两点,且OE⊥OF?若存在,求出直线l斜率k的值;若不存在,说明理由.
已知点A 和B
,动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与经过点(2,0)且倾斜角为
的直线交于D、E两点
(1)求点C的轨迹方程;
(2)求线段DE的长
设椭圆C: 过点(0,4),(5,0).
(1)求C的方程;
(2)求过点(3,0)且斜率为的直线被椭圆C所截线段的中点坐标
甲、乙两射击运动员分别对一目标射击次,甲射中的概率为
,乙射中的概率为
,求:
(1)人都射中目标的概率;
(2)人中恰有
人射中目标的概率;
(3)人至少有
人射中目标的概率
设函数,其中
.
(Ⅰ)当时,判断函数
在定义域上的单调性;
(Ⅱ)求函数的极值点;
(Ⅲ)证明对任意的正整数,不等式
都成立.
函数,过曲线
上的点
的切线方程为
.
(1)若在
时有极值,求
的表达式;
(2)在(1)的条件下,求在[-3,1]上的最大值;
(3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.