一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是
;从袋中任意摸出2个球,至少得到1个白球的概率是
.
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,记得到白球的个数为
,求随机变量
的数学期望
.
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于
。并指出袋中哪种颜色的球个数最少.
已知点满足:
(其中
,又知
.
(Ⅰ)若,求
的表达式;
(Ⅱ)已知点,记
,且
对一切
恒成立,试求
的取值范围.
如图,F是抛物线
的焦点,Q为准线与
轴的交点,直线
经过点Q.
(Ⅰ)直线与抛物线有唯一公共点,求
的方程;
(Ⅱ)直线与抛物线交于A、B两点记FA、FB
的斜率分别为,
.求证:
为定值.
已知矩形ABCD中,AB=2AD=4,E为CD的中点,沿AE将三角形AED折起,使DB=,
如图,O,H分别为AE、AB中点.
(Ⅰ)求证:直线OH//面BDE;
(Ⅱ)求证:面ADE面ABCE;
(Ⅲ)求二面角O-DH-E的余弦值.
某人抛掷一枚质量分布均匀的骰子,出现各数的概率都是,构造数列
,使
,记
.
(Ⅰ)求时的概率;
(Ⅱ)求前两次均为奇数且的概率.
已知数列的首项
,前
项和
恒为正数,且当
时,
.
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:.