已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求:
(Ⅰ)D1E与平面BC1D所成角的大小;
(Ⅱ)二面角D-BC1-C的大小;
(Ⅲ)异面直线B1D1与BC1之间的距离.
如图所示,在四棱锥
中,底面四边形
是菱形,
,
是边长为2的等边三角形,
,
.
(Ⅰ)求证:
底面
;
(Ⅱ)求直线
与平面
所成角的大小;
(Ⅲ)在线段
上是否存在一点
,使得
∥平面
?如果存在,求
的值,如果不存在,请说明理由.
根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示.
假设每名队员每次射击相互独立.
(Ⅰ)求上图中
的值;
(Ⅱ)队员甲进行三次射击,求击中目标靶的环数不低于8环的次数
的分布列及数学期望(频率当作概率使用);
(Ⅲ)由上图判断,在甲、乙两名队员中,哪一名队员的射击成绩更稳定?(结论不需证明)
函数
.
(Ⅰ)在
中,
,求
的值;
(Ⅱ)求函数
的最小正周期及其图象的所有对称轴的方程.
已知函数
的自变量的取值区间为A,若其值域区间也为A,则称A为
的保值区间.
(Ⅰ)求函数
形如
的保值区间;
(Ⅱ)函数
是否存在形如
的保值区间?若存在,求出实数
的值,若不存在,请说明理由.
已知函数
.
(Ⅰ)当
时,求
值;
(Ⅱ)若存在区间
(
且
),使得
在
上至少含有6个零
点,在满足上述条件的
中,求
的最小值.