如图5:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G.
(1)求证:平面EFG∥平面A CB1,并判断三角形类型;
(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.
设实数
满足
,其中
;
实数
满足
(1)若,且
为真,求实数
的取值范围;
(2)若是
的必要不充分条件,求实数
的取值范围.
设命题;命题
,使得
,如果命题
或
为真命题,命题
且
为假命题,求实数
的取值范围.
已知圆:
,点
,
,点
在圆
上运动,
的垂直平分线交
于点
.
(1)求动点的轨迹
的方程;
(2)设分别是曲线
上的两个不同点,且点
在第一象限,点
在第三象限,若
,
为坐标原点,求直线
的斜率
;
(3)过点且斜率为
的动直线
交曲线
于
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个点?若存在,求出
的坐标,若不存在,说明理由.
已知椭圆的方程为
,双曲线
的两条渐近线为
,
,过椭圆
的右焦点
作直线
,使
⊥
,又l与
交于
点,设
与椭圆
的两个交点由上至下依次为
.
(1)当与
夹角为60°,双曲线的焦距为4时,求椭圆
的方程及离心率;
(2)求的最大值.
已知抛物线的顶点在原点,焦点在轴正半轴上,抛物线上一点的横坐标为2,且该点到焦点的距离为2.
(1)求抛物线的标准方程;
(2)与圆相切的直线
交抛物线于不同的两点
,若抛物线上一点
满足
,求
的取值范围。