游客
题文

某地有三家工厂,分别位于矩形 A B C D 的顶点 A , B ,及 C D 的中点 P 处,已知 A B = 20 k m , C D = 10 k m ,为了处理三家工厂的污水,现要在矩形 A B C D 的区域上(含边界),且 A , B 等距离的一点 O 处建造一个污水处理厂,并铺设排污管道 A O , B O , O P ,设排污管道的总长为 y k m
(I)按下列要求写出函数关系式:
①设 B A O = θ r a d ,将 y 表示成 θ 的函数关系式;
②设 O P = x k m ,将 y 表示成 x 的函数关系式。
(Ⅱ)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短。

image.png

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

对于给定数列,如果存在实常数,使得对于任意的都成立,我们称这个数列是“类数列”.
(1)若,判断数列是否为“类数列”,并说明理由;
(2)若数列是“类数列”,则数列是否一定是“类数列”,若是的,加以证明;若不是,说明理由;
(3)若数列满足:,设数列的前项和为,求的表达式,并判断是否是“类数列”.

如图,某污水处理厂要在一个矩形的池底水平铺设污水净化管道(直角是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口的中点,分别落在上,且,设

(1)试将污水管道的长度表示成的函数,并写出定义域;
(2)当管道长度为何值时,污水净化效果最好,并求此时管道的长度.

如图,已知正四棱柱中,底面边长,侧棱的长为4,过点的垂线交侧棱于点,交于点

(1)求证:⊥平面
(2)求三棱锥的体积.

已知函数
(1)求函数的零点,并求反函数
(2)设,若不等式在区间上恒成立,求实数的范围.

如图,已知椭圆的中心在坐标原点,长轴均为且在轴上,短轴长分别为,过原点且不与轴重合的直线的四个交点按纵坐标从大到小依次为.记的面积分别为

(1)当直线轴重合时,若,求的值;;
(2)设直线,若,证明:是线段的四等分点
(3)当变化时,是否存在与坐标轴不重合的直线,使得?并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号