游客
题文

请先阅读:
在等式 cos 2 x = 2 cos 2 x - 1 ( x R ) 的两边求导,得: ( cos 2 x ) ` = ( 2 cos 2 x - 1 ) ` ,由求导法则,得 ( - sin 2 x ) 2 ` = 4 cos x ( - sin x ) ,化简得等式: sin 2 x = 2 cos x sin x .
(1)利用上题的想法(或其他方法),结合等式 ( 1 + x ) n = C 0 n + C n 1 x + C n 2 x 2 + . . . + C n n x n  ( x R ,正整数 n 2 ),证明: n [ ( 1 + x ) n - 1 - 1 ] = k = 2 n k C n k x k - 1 (2)对于正整数 n 3 ,求证:
(i) k = 1 n ( - 1 ) k k C n k = 0    (ii) k = 1 n ( - 1 ) k k 2 C n k = 0 ; (iii) k = 1 n 1 k + 1 C n k = 2 n - 1 - 1 n + 1

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,为了测量河对岸A、B两点之间的距离,观察者找到一个点C,从C点可以观察到点A、B;找到一个点D,从D点可以观察到点A、C:找到一个点E,从E点可以观察到点B、C。并测得以下数据:CD=CE=100m,∠ACD=90°,∠ACB=45°,∠BCE=75°,∠CDA=∠CEB=60°,求A、B两 点之间的距离。

已知函数f(x)=|x+1|+|x﹣2|﹣m
(I)当时,求f(x) >0的解集;
(II)若关于的不等式f(x) ≥2的解集是,求的取值范围

已知直线C1,(t为参数),圆C2 (θ为参数).
(I)当α=时,求C1与C2的交点的直角坐标;
(II)过坐标原点O作C1的垂线,垂足为A,P为OA的中点.当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.

如图,直线经过⊙上的点,并且交直线,连接

(I)求证:直线是⊙的切线;
(II)若的半径为,求的长.

已知函数
(Ⅰ)当a=﹣2时,求函数f(x)的单调区间;
(Ⅱ)若g(x)= +1,+∞)上是单调函数,求实数a的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号