请先阅读:
在等式
的两边求导,得:
,由求导法则,得
,化简得等式:
.
(1)利用上题的想法(或其他方法),结合等式
 (
,正整数
),证明:
(2)对于正整数
,求证:
(i)
   (ii)
; (iii)
如图,为了测量河对岸A、B两点之间的距离,观察者找到一个点C,从C点可以观察到点A、B;找到一个点D,从D点可以观察到点A、C:找到一个点E,从E点可以观察到点B、C。并测得以下数据:CD=CE=100m,∠ACD=90°,∠ACB=45°,∠BCE=75°,∠CDA=∠CEB=60°,求A、B两 点之间的距离。
已知函数f(x)=|x+1|+|x﹣2|﹣m
(I)当时,求f(x) >0的解集;
(II)若关于的不等式f(x) ≥2的解集是
,求
的取值范围
已知直线C1:,(t为参数),圆C2:
(θ为参数).
(I)当α=时,求C1与C2的交点的直角坐标;
(II)过坐标原点O作C1的垂线,垂足为A,P为OA的中点.当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.
如图,直线经过⊙
上的点
,并且
⊙
交直线
于
,
,连接
.
(I)求证:直线是⊙
的切线;
(II)若⊙
的半径为
,求
的长.
已知函数
(Ⅰ)当a=﹣2时,求函数f(x)的单调区间;
(Ⅱ)若g(x)= +
在
1,+∞)上是单调函数,求实数a的取值范围.