如图,直线经过⊙
上的点
,并且
⊙
交直线
于
,
,连接
.
(I)求证:直线是⊙
的切线;
(II)若⊙
的半径为
,求
的长.
(本小题满分13分)已知椭圆过点
,且与抛物线
有一个公共的焦点.
(Ⅰ)求椭圆方程;
(Ⅱ)过椭圆的右焦点
且斜率为
的直线
与椭圆
交于
两点,求弦
的长;
(Ⅲ)以第(Ⅱ)题中的为边作一个等边三角形
,求点
的坐标.
(本小题满分12分)等差数列中,
,其前
项和为
.等比数列
的各项均为正数,
,且
,
.
(Ⅰ)求数列与
的通项公式;
(Ⅱ)求数列的前
项和
.
(本小题满分12分)如图,将边长为2,有一个锐角为60°的菱形,沿着较短的对角线
对折,使得
,
为
的中点.若P为AC上的点,且满足
.
(Ⅰ)求证:
(Ⅱ)求三棱锥的体积;
(本小题满分12分)已知向量m=(sinωx,cosωx),n=(cosωx,-cosωx),若函数f(x)=m·n的图象关于直线
对称,其中ω取所有可能值中的最小正数值.
(Ⅰ)求的周期和单调递增区间;
(Ⅱ)△ABC中,如果f()=
,b=4
,且asinA-bsinB=sinC(c-
b),求△ABC的面积.
(本小题满分12分)一次数学测验,某班50名同学的成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组,第二组
,……,第五组
.按上述分组方法得到的频率分布直方图如图所示.
(Ⅰ)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数;
(Ⅱ)若从第一、五组中随机取出两个同学的成绩,求这两个成绩差的绝对值大于30分的概率.