游客
题文

b > 0 ,椭圆方程为 x 2 2 b 2 + y 2 b 2 = 1 ,抛物线方程为 x 2 = 8 y - b .如图所示,过点 F 0 , b + 2 x 轴的平行线,与抛物线在第一象限的交点为 G .已知抛物线在点 G 的切线经过椭圆的右焦点 F 1

(1)求满足条件的椭圆方程和抛物线方程;
(2)设 A , B 分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点 P ,使得 A B P 为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。

image.png

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,斜四棱柱的底面是矩形,平面⊥平面分别为的中点.

求证:(1)
(2)∥平面.

已知圆.
(1)若直线过点,且与圆相切,求直线的方程;
(2)若圆的半径为4,圆心在直线上,且与圆内切,求圆的方程.

已知为实数,:点在圆的内部;都有.
(1)若为真命题,求的取值范围;
(2)若为假命题,求的取值范围;
(3)若“”为假命题,且“”为真命题,求的取值范围.

如图,设椭圆的离心率,顶点的距离为为坐标原点.

(1)求椭圆的方程;
(2)过点作两条互相垂直的射线,与椭圆分别交于两点.
(ⅰ)试判断点到直线的距离是否为定值.若是请求出这个定值,若不是请说明理由;
(ⅱ)求的最小值.

已知函数处达到极值,
(1)求的值;
(2)若恒成立,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号