已知函数
(1)若恒成立,求实数a的取值范围;
(2)若,证明:
(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
已知二次函数对任意
均有
成立,且函数的图像过点
.
(1)求函数的解析式;
(2)若不等式的解集为
,求实数
的值.
(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.
已知椭圆,常数
、
,且
.
(1)当
时,过椭圆左焦点
的直线交椭圆于点
,与
轴交于点
,若
,求直线
的斜率;
(2)过原点且斜率分别为和
(
)的两条直
线与椭圆
的交点为
(按逆时针顺序排列,且点
位于第一象限内),试用
表示四边形
的面积
;
(3)求的最大值.
(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分6分.
已知数列满足
,
,
是数列的前
项和,且
(
).
(1)求实数的值;
(2)求数列
的通项公式;
(3)对于数列
,若存在常数M,使
(
),且
,则M叫做数列
的“上渐近值”.
设(
),
为数列
的前
项和,求数列
的上渐近值.
(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.
已知函数(
,
、
是常数,且
),对定义域内任意
(
、
且
),恒有
成立.
(1)求函数的解析式,并写出函数的定义域;
(2)求的取值范围,使得
.
本题共有2个小题,第1小题满分7分,第2小题满分7分.
已知△的周长为
,且
.
(1)求边长的值;
(2)若(结果用反三角函数值表示).