设
是平面直角坐标系
中的点,
是经过原点与点
的直线,记
是直线
与抛物线
的异于原点的交点
(1)若
,求点
的坐标;
(2)若点
在椭圆
上,
,求证:点
落在双曲线
上;
(3)若动点
满足
,
,若点
始终落在一条关于
轴对称的抛物线上,试问动点
的轨迹落在哪种二次曲线上,并说明理由.
、如图,在三棱锥P-ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点。
(Ⅰ) 若PA=AB=2,求三棱锥P-ABC的体积;
(Ⅱ)证明:BE⊥平面PAC
(Ⅲ)如何在BC上找一点F,使AD//平面PEF?并说明理由。
已知为偶函数,曲线
过点
,
.
(Ⅰ)求实数b、c的值;
(Ⅱ)若曲线有斜率为0的切线,求实数
的取值范围;
(Ⅲ)若当时函数
取得极值,确定
的单调区间和极值.
等比数列{}的前n 项和为
,已知
,
,
成等差数列.
(Ⅰ)求{}的公比q;
(Ⅱ)求-
=3,求数列{
}的通项公式
(Ⅲ)数列{n}的前n项的和
已知函数.
(Ⅰ)求f(x)的周期和单调递增区间;
(Ⅱ)若x∈[0,]时,f(x)的最大值为4,求a的值,并指出这时x的值.
工厂用两种原料A、B配成甲、乙两种药品,每生产一箱甲药品使用4kg的A原料,耗时1小时,每生产一箱乙药品使用4kg的B原料,耗时2小时,该厂每天最多可从原料厂获取16kg的A原料和12kg的B原料,每天只能有8小时的合成生产时间,该厂生产一箱甲药品获得3万元,生产一箱乙药品获得1万元,怎样安排生产才能获利最大?最大利润是多少?