游客
题文

、如图,在三棱锥P-ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点。
(Ⅰ) 若PA=AB=2,求三棱锥P-ABC的体积;
(Ⅱ)证明:BE⊥平面PAC

(Ⅲ)如何在BC上找一点F,使AD//平面PEF?并说明理由。

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

如图,四棱锥P-ABCD的底面是矩形,侧面PAD丄底面ABCD,..

(1)求证:平面PAB丄平面PCD
(2)如果AB=BC=2,PB=PC=求四棱锥P-ABCD的体积.

设直线的方程为.
(1)若在两坐标轴上的截距相等,求的方程;
(2)若不经过第二象限,求实数的取值范围。

已知过曲线上任意一点作直线的垂线,垂足为,且.
⑴求曲线的方程;
⑵设是曲线上两个不同点,直线的倾斜角分别为,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.

已知处取得极值,且在点处的切线斜率为.
⑴求的单调增区间;
⑵若关于的方程在区间上恰有两个不相等的实数根,求实数的取值范围.

已知四棱锥的底面为直角梯形,底面,且的中点.
⑴求证:直线平面
⑵若直线与平面所成的角为,求四棱锥的体积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号