游客
题文

某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5. 若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6. 实施每种方案,第二年与第一年相互独立。令 ξ i ( i = 1 , 2 ) 表示方案 i 实施两年后柑桔产量达到灾前产量的倍数。
(1)写出 ξ 1 , ξ 2 的分布列;
(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3)不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

设有关于x的一元二次方程
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

已知函数若函数在x = 0处取得极值.
(1) 求实数的值;
(2) 若关于x的方程在区间[0,2]上恰有两个不同的实数根,求实数的取值范围;
(3) 证明:对任意的自然数n,有恒成立.

已知函数(其中)的图象如图所示.

(1) 求函数的解析式;
(2) 设函数,且,求的单调区间.

已知函数
(1) 当时,函数恒有意义,求实数a的取值范围;
(2) 是否存在这样的实数a,使得函数在区间上为增函数,并且的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.

(1) 证明:BD⊥平面PAC;
(2) 若PA=1,AD=2,求二面角B-PC-A的正切值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号