为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
|
5 |
|
女生 |
10 |
|
|
合计 |
|
|
50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,
还喜欢打乒乓球,
还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求
和
不全被选中的概率.
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
)
(本小题满分10分)
已知圆与直线
相切于点
,且圆心在直线
上.
(Ⅰ)求圆的方程;
(Ⅱ)设直线与圆
相交于
两点,
是坐标原点.求
的面积最大值,并求取得最大值时直线
的方程.
(本小题满分10分)
设数列的前n项和
,数列
满足
,
(其中
),求数列
的前
项和.
(本小题满分10分)
袋中有大小、形状相同的白、黑球各一个,现有放回地随机摸取3次,每次摸取一个球.
(Ⅰ)试问:一共有多少种不同的结果?请列出所有可能的结果;
(Ⅱ)若摸到白球时得1分,摸到黑球时得2分,求3次摸球所得总分大于4分的概率.
(本小题满分10分)
如下图,从参加数学竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下. 观察图形,回答下列问题:
(Ⅰ)79.5—89.5这一组的频数、频率分别是多少?
(Ⅱ)估计这次数学竞赛的平均成绩是多少?
(Ⅲ)估计这次数学竞赛的及格率(60分及以上为及格).
|
(本小题满分8分)
在中,
,
,
.
(Ⅰ)求的值;
(Ⅱ)求的值.