如图,在四棱锥 P - A B C D 中,底面 A B C D 是矩形.已知 A B = 3 , A D = 2 , P A = 2 , P D = 2 2 , ∠ P A B = 60 ° . (Ⅰ)证明 A D ⊥ 平面 P A B ; (Ⅱ)求异面直线 P C 与 A D 所成的角的大小; (Ⅲ)求二面角 P - B D - A 的大小.
已知函数,曲线在点处的切线为,若时,有极值. (1)求的值; (2)求在上的最大值和最小值.
已知正方体ABCD-A1B1C1D1, O是底面ABCD对角线的交点. (1)求证:A1C⊥平面AB1D1; (2)求.
已知函数在与时都取得极值. (1)求的值及函数的单调区间; (2)若对,不等式恒成立,求的取值范围.
如图,直线与抛物线交于两点,与轴相交于点,且. (1)求证:点的坐标为; (2)求证:; (3)求的面积的最小值.
已知函数 (Ⅰ)求的单调减区间; (Ⅱ)若在区间[-2,2].上的最大值为20,求它在该区间上的最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号