已知函数,曲线
在点
处的切线为
,若
时,
有极值.
(1)求的值;
(2)求在
上的最大值和最小值.
本题共有3个小题,第1小题满分4分,第2小题满分8分,
第3小题满分6分.
设把三阶行列式
中第一行第二列元素的余子式记为
,且关于
的不等式
的解集为
。各项均为正数的数列
的前
项和为
,点列
在函数
的图象上。
(1)求函数的解析式;
(2)若,求
的值;
(3)令,求数列
的前
项中满足
的所有项数之和.
本题共有2个小题,第1小题满分8分,第2小题满分6分.
为保护环境,某单位采用新工艺,把二氧化碳转化为一种可利用的化工产品。已知该单位每月的处理量最多不超过300吨,月处理成本(元)与月处理量
(吨)之间的函数关系式可近似的表示为:
,且每处理一吨二氧化碳得到可利用的化工产品价值为300元。
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)要保证该单位每月不亏损,则每月处理量应控制在什么范围?
本题共有2个小题,第1小题满分6分,第2小题满分6分.
如图,已知平面
,
,
,
,
分别是
的中点.
(1)求异面直线与
所成的角的大小;
(2)求绕直线
旋转一周所构成的旋转体的体积.
本题共有2个小题,第1小题满分6分,第2小题满分6分.
已知复数,
(
,
是虚数单位)。
(1)若复数在复平面上对应点落在第一象限,求实数
的取值范围
(2)若虚数是实系数一元二次方程
的根,求实数
的值.
、(本小题满分14分)
已知函数,数列
满足递推关系式:
(
),且
、
(Ⅰ)求、
、
的值;
(Ⅱ)用数学归纳法证明:当时,
;
(Ⅲ)证明:当时,有
、