游客
题文

本题共有2个小题,第1小题满分8分,第2小题满分6分.
为保护环境,某单位采用新工艺,把二氧化碳转化为一种可利用的化工产品。已知该单位每月的处理量最多不超过300吨,月处理成本(元)与月处理量(吨)之间的函数关系式可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为300元。
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)要保证该单位每月不亏损,则每月处理量应控制在什么范围?

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

、已知直线的参数方程为为参数),曲线C的极坐标方程是,以极点为原点,极轴为轴正方向建立直角坐标系,点,直线与曲线C交于A、B两点.
(1) 写出直线与曲线C的普通方程;
(2) 线段长度分别记为||,||,求的值。

证明下列不等式:(1)求证
(2) 如果,则

(本小题满分12分)
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:
(1)打了两局就停止比赛的概率;
(2)打满3局比赛还未停止的概率;
(3)比赛停止时已打局数的分布列与期望.

(本小题满分12分)
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

性别
是否需要志愿者




需要
40
30
不需要
160
270


(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.









(本小题满分12分)
在直角坐标中,以为极点,正半轴为极轴建立极坐标系,曲线的极坐标方程为分别为轴,轴的交点。曲线的参数方程为
为参数)。
(1)求的极坐标,并写出的直角坐标方程;
(2)求点与曲线上的动点距离的最大值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号