已知函数在
处取得极值.
(1)讨论和
是函数
的极大值还是极小值;
(2)过点作曲线
的切线,求此切线方程.
【原创】已知函数满足以下条件:①定义在正实数集上;②
;③对任意实数
,都有
。
(1)求,
的值;
(2)求证:对于任意,都有
;
(3)若不等式,对
恒成立,求实数
的取值范围。
已知函数(
)
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,求
在
上的最大值和最小值(
);
(Ⅲ)求证:.
将编号为1、2、3、4的四个小球放入甲、乙、丙三只盒子内.
(1)若三只盒子都不空,且3号球必须在乙盒内有多少种不同的放法;
(2)若1号球不在甲盒内,2号球不在乙盒内,有多少种不同放法。(均须先列式再用数字作答)
观察下列各不等式:
…
(1)由上述不等式,归纳出一个与正整数有关的一般性结论;
(2)用数学归纳法证明你得到的结论.
已知数列,且
(1)求数列的通项公式;
(2)设,求适合方程
的正整数
的值。