如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(I)求证:BD⊥FG;
(II)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由.
(III)当二面角B—PC—D的大小为
时,求PC与底面ABCD所成角的正切值.
已知a,b为正实数.
(1)求证:
≥a+b;
(2)利用(1)的结论求函数y=
(0<x<1)的最小值.
已知函数f(x)=|x+3|+|x-a|(a>0).
(1)当a=4时,已知f(x)=7,求x的取值范围;
(2)若f(x)≥6的解集为{x|x≤-4或x≥2},求a的值.
设函数f(x)=|x-1|+|x-2|.
(1)画出函数y=f(x)的图象;
(2)若不等式|a+b|+|a-b|≥|a|f(x)( a≠0,a,b∈R)恒成立,求实数x的取值范围.
设不等式|x-2|<a(a∈N*)的解集为A,且
∈A,
∉A.
(1)求a的值;
(2)求函数f(x)=|x+a|+|x-2|的最小值.
已知a≥b>0,求证:2a3-b3≥2ab2-a2b.