已知函数,数列
满足
(1)证明求数列
的通项公式;
(2)记,求
.
如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.
(1)证明:EM⊥BF;
(2)求平面 BEF 与平面ABC 所成的二面角的余弦值.
已知向量 与
共线,设函数
。
(1)求函数 的周期及最大值;
(2)已知锐角 △ABC 中的三个内角分别为 A、B、C,若有 ,边 BC=
,
,求 △ABC 的面积.
(本小题满分14分) 已知椭圆的中心在原点,一个焦点
,且长轴长与短轴长的比是
.若椭圆
在第一象限的一点
的横坐标为
,过点
作倾斜角互补的两条不同的直线
,
分别交椭圆
于另外两点
,
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:直线的斜率为定值;
(Ⅲ)求面积的最大值.
(本小题满分14分)
已知四棱锥的底面
为菱形,且
,
,
与
相交于点
.
(Ⅰ)求证:底面
;
(Ⅱ)求直线与平面
所成角的正弦值;
(Ⅲ)若是
上的一点,且
,求
的值.
(本小题满分13分)
对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这
名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(Ⅰ)求出表中及图中
的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.
分组 |
频数 |
频率 |
![]() |
10 |
0.25 |
![]() |
24 |
![]() |
![]() |
![]() |
![]() |
![]() |
2 |
0.05 |
合计 |
![]() |
1 |