如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.
(1)证明:EM⊥BF;
(2)求平面 BEF 与平面ABC 所成的二面角的余弦值.
已知等比数列的前
项和为
,且点
在函数
的图象上.
(1)求的值;
(2)若数列满足:
,且
.求数列
的通项公式.
如图,已知圆交
轴于
、
两点,
在圆
上运动(不与
、
重合),过
作直线
,
垂直于
交直线
于点
.
(1)求证:“如果直线过点
,那么
”为真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD.
(1)证明:BD⊥AA1;
(2)证明:平面AB1C//平面DA1C1
(3)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
已知向量,
,设函数
.
(1)求函数的最大值;
(2)在锐角三角形中,角
、
、
的对边分别为
、
、
,
,且
的面积为3,
,求
的值.
某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段
,
…
后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:
(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(Ⅲ)用分层抽样的方法在分数段为的学生中抽取一个容量为
的样本,将该样本看成一个总体,从中任取
人,求至多有
人在分数段
的概率.