如图,已知圆交
轴于
、
两点,
在圆
上运动(不与
、
重合),过
作直线
,
垂直于
交直线
于点
.
(1)求证:“如果直线过点
,那么
”为真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
已知椭圆(a>b>0)的离心率为
,以原点为圆心,椭圆短半轴长半径的圆与直线y=x+
相切.
(1)求椭圆的方程;
(2)设直线与椭圆在
轴上方的一个交点为
,
是椭圆的右焦点,试探究以
为
直径的圆与以椭圆长轴为直径的圆的位置关系.
已知如图:平行四边形ABCD中,,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.
(1)求证:GH∥平面CDE;
(2)若,求四棱锥F-ABCD的体积.
我区高三期末统一测试中某校的数学成绩分组统计如下表:
分组 |
频数 |
频率 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
合计 |
![]() |
![]() |
(1)求出表中、
、
、
的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;
(2)若我区参加本次考试的学生有600人,试估计这次测试中我区成绩在分以上的人数;
(3)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分
的概率.
已知函数.
求函数的最小正周期和值域;
若是第二象限角,且
,试求
的值.
设椭圆的左、右焦点分别为
,
上顶点为,在
轴负半轴上有一点
,满足
,且
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)是过
三点的圆上的点,
到直线
的最大距离等于椭圆长轴的长,求椭圆
的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为
的直线
与椭圆
交于
两点,线段
的中垂线与
轴相交于点
,求实数
的取值范围.