(本小题共13分)
在平面直角坐标系xOy中,经过点(0, )且斜率为k的直线l与椭圆
有两个不同的交点P和Q.
(Ⅰ)求k的取值范围;
(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与
共线?如果存在,求出k的值;如果不存在,请说明理由.
已知正项数列{an}满足:a1=1,且(n+1)an+12=nan2﹣an+1an,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{}的前n项积为Tn,求证:当x>0时,对任意的正整数n都有Tn>
.
若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:≤(
)•(
).当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.
设正整数构成的数列{an}使得a10k﹣9+a10k﹣8+…+a10k≤19对一切k∈N*恒成立.记该数列若干连续项的和为S(i,j),其中i,j∈N*,且i<j.求证:所有S(i,j)构成的集合等于N*.
设a1,a2,…,an为正数,求证:+
+…+
+
≥a1+a2+…+an.
设a,b,c为正数,利用排序不等式证明a3+b3+c3≥3abc.