在工厂生产中,若机器更新过早,则生产潜力未能充分发挥而造成浪费;若更新过迟,老机器生产效率低,维修与损耗费用大,也会造成浪费.因此,需要确定机器使用的最佳年限(即机器使用多少年平均费用最小)
某工厂用7万元购买了一台新机器,运输安装费2千元,每年投保、动力消耗固定的费用为2千元;每年的保养、维修、更换易损件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,……,即每年增加1千元,问这台机器的最佳使用年限是多少年?并求出年平均费用的最小值.
(本小题满分15分)
如图,椭圆方程为,
为椭圆上的动点,
为椭圆的两焦点,当
点不在
轴上时,过
作
的外角平分线的垂线
,垂足为
,当点
在
轴上时,定义
与
重合。
(Ⅰ)求点的轨迹
的方程;
(Ⅱ)已知、
,试探究是否存在这样的点
:点
是轨迹
内部的整点(平面内横、纵坐标均为整数的点称为整点),且
的面积
?若存
在,求出点
的坐标,若不存在,说明理由。
如图,正方形所在平面与圆
所在平面相交于
,线段
为圆
的弦,
垂直于圆
所在平面,垂足
是圆
上异于
、
的点,
,圆
的直径为9
(Ⅰ)求证:平面平面
;
(Ⅱ)求二面角的平面角的正切值。
.(本小题满分14分)
已知数列的首项
,
,其中
。
(Ⅰ)求证:数列为等比数列;
(Ⅱ)记,若
,求最大的正整数
。
已知向量
,设函数
。
(Ⅰ)求的最小正周期与单调递减区间;
(Ⅱ)在中,
、
、
分别是角
、
、
的对边,若
的面积为
,求
的值。
已知函数.
⑴若,解方程
;
⑵若,求
的单调区间;
⑶若存在实数,使
,求实数
的取值范围 .