在工厂生产中,若机器更新过早,则生产潜力未能充分发挥而造成浪费;若更新过迟,老机器生产效率低,维修与损耗费用大,也会造成浪费.因此,需要确定机器使用的最佳年限(即机器使用多少年平均费用最小)
某工厂用7万元购买了一台新机器,运输安装费2千元,每年投保、动力消耗固定的费用为2千元;每年的保养、维修、更换易损件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,……,即每年增加1千元,问这台机器的最佳使用年限是多少年?并求出年平均费用的最小值.
(本题12分)设二次函数,若
的解集为
,函数
,(1)求
与
的值;(2)
(本题12分)设等差数列第10项为24,第25项为-21
(1)求这个数列的通项公式;(2)设为其前n项和,求使取最大值时的n值。
(本题12分)建造一个容积为,深为
的长方体无盖水池,如果池底和池壁的造价分别为每平方米120元和80元,那么水池的最低总造价是多少元?
(1)以下是计算的程序框图,请写出对应的程序
解:对应的程序如下:
(2)二进数化为8进制数
已知26辆货车以相同速度v由A地驶向400千米处的B地,每两辆货车间距离为d千米,现已知d与v的平方成正比,且当v=20(千米/时)时,d=1(千米).
(1)写出d与v的函数关系;
(2)若不计货车的长度,则26辆货车都到达B地最少需要多少小时?此时货车速度是多少?