若a、b、c均为正数,求证:。
数列{an}满足a1=2,an+1=an2+6an+6(n∈N×)
(Ⅰ)设Cn=log5(an+3),求证{Cn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设,数列{bn}的前n项的和为Tn,求证:
.
如图,在四棱锥S﹣ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面SAC;
(Ⅲ)(理科)当二面角E﹣BD﹣C的大小为45°时,试判断点E在SC上的位置,并说明理由.
已知圆C:x2+y2+2x﹣4y+3=0.
(1)若圆C的切线在x轴、y轴上的截距相等,求切线方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M且有|PM|=|PO|(O为原点),求使|PM|取得最小值时点P的坐标.
已知关于x的一元二次方程x2﹣2(a﹣2)x﹣b2+16=0
(1)若a,b是一枚骰子掷两次所得到的点数,求方程有两正根的概率.
(2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.
(本小题满分10分)选修4—5:不等式选讲
已知a+b=1,对,b∈(0,+∞),
+
≥|2x-1|-|x+1|恒成立,
(Ⅰ)求+
的最小值;
(Ⅱ)求x的取值范围。