游客
题文

(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)已知直线>0交抛物线C:=2>0于A、B两点,M是线段AB的中点,过M作轴的垂线交C于点N.

(1)若直线过抛物线C的焦点,且垂直于抛物线C的对称轴,试用表示|AB|;
(2)证明:过点N且与AB平行的直线和抛物线C有且仅有一个公共点;
(3)是否存在实数,使=0.若存在,求出的所有值;若不存在,说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

如图,过曲线上一点作曲线的切线轴于点,又过轴的垂线交曲线于点,然后再过作曲线的切线轴于点,又过轴的垂线交曲线于点,以此类推,过点的切线轴相交于点,再过点轴的垂线交曲线于点N).

(1) 求及数列的通项公式;
(2) 设曲线与切线及直线所围成的图形面积为,求的表达式;
(3) 在满足(2)的条件下, 若数列的前项和为,求证:N.

(本小题满分14分)
设函数上的导函数为上的导函数为,若在上,恒成立,则称函数上为“凸函数”.已知
(1)若为区间上的“凸函数”,试确定实数的值;
(2)若当实数满足时,函数上总为“凸函数”,求的最大值.

(本小题满分14分)
已知椭圆的离心率. 直线)与曲线交于不同的两点,以线段为直径作圆,圆心为
(1) 求椭圆的方程;
(2) 若圆轴相交于不同的两点,求的面积的最大值.

(本小题满分l4分)
如图4,在四棱锥中,底面是矩形,
平面,于点
(1) 求证:
(2) 求直线与平面所成的角的余弦值.

本小题满分12分)
在一次人才招聘会上,有A、B两家公司分别开出它们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资基础上递增5%,设某人年初被A、B两家公司同时录用,试问:
(1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别是多少?
(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(其他因素不计),该人应该选择哪家公司?为什么?(参考值:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号