(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)已知直线:
=
+
>0
交抛物线C:
=2
>0
于A、B两点,M是线段AB的中点,过M作
轴的垂线交C于点N.
(1)若直线过抛物线C的焦点,且垂直于抛物线C的对称轴,试用
表示|AB|;
(2)证明:过点N且与AB平行的直线和抛物线C有且仅有一个公共点;
(3)是否存在实数,使
=0.若存在,求出
的所有值;若不存在,说明理由.
本小题满分12分)
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组
……第五组
,如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)求这组数据的众数和中位数(精确到0.1);
(II)设表示样本中两个学生的百米测
试成绩,已知
求事件“”的概率.
(Ⅲ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如下表
性别 是否达标 |
男 |
女 |
合计 |
达标 |
![]() |
![]() |
_____ |
不达标 |
![]() |
![]() |
_____ |
合计 |
______ |
______ |
![]() |
根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
(本小题满分12分)
已知在中,角
,
,
的对边的边长分别为
,
,
,且
.
(Ⅰ)求角的大小;
(Ⅱ)现给出三个条件:①;②
;③
.
试从中选出两个可以确定的条件,写出你的选择,并以此为依据求出
的面积.(只需写出一个选定方案即可,选多种方案以第一种方案记分)
(本小题满分12分)
已知点Pn(an,bn)都在直线:y=2x+2上,P1为直线
与x轴的交点,数列
成等差数列,公差为1.(n∈N+)
(1)求数列,
的通项公式;
(2)若f(n)=问是否存在k
,使得f(k+5)=2f(k)-2成立;若存在,求出
k的值,若不存在,说明理由。
(3)求证:(n≥2,n∈N+)
(本小题满分12分)
已知点(x, y) 在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程;定点M(2,1),平行于OM的直线
在y轴上的截距为m(m≠0),直线
与曲线C交于A、B两个不同点.
(1)求曲线的方程;
(2)求m的取值范围.
((本小题满分12分)
如图,在四棱锥中,底面
是矩形.已知
.
(1)证明平面
;
(2)求异面直线与
所成的角的大小;
(3)求二面角的大小.