(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)已知直线:
=
+
>0
交抛物线C:
=2
>0
于A、B两点,M是线段AB的中点,过M作
轴的垂线交C于点N.
(1)若直线过抛物线C的焦点,且垂直于抛物线C的对称轴,试用
表示|AB|;
(2)证明:过点N且与AB平行的直线和抛物线C有且仅有一个公共点;
(3)是否存在实数,使
=0.若存在,求出
的所有值;若不存在,说明理由.
(满分14分)已知函数
(1)当时,求曲线
在点
处的切线方程;
(2)当时,讨论
的单调性
(满分14分)设命题P:关于x的不等式(a>0且a≠1)的解集为{x|-a<x<2a};命题Q:y=lg(ax2-x+a)的定义域为R,如果P或Q为真,P且Q为假,求a的取值范围
(满分12分)已知向量与
互相垂直,其中
.
(1)求和
的值;
(2)求函数的值域。
(满分12分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足。
(Ⅰ)求角C的大小;
(Ⅱ)求的最大值。
(满分14分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设
为隔热层建造费用与20年的能源消耗费用之和。
(1)求的值及
的表达式。
(2)隔热层修建多厚时,总费用达到最小,并求最小值。