把边长为a的等边三角形铁皮如图(1)剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的底面为正三角形的直棱柱形容器(不计接缝)如图(2),设容器的高为x,容积为。
(Ⅰ)写出函数的解析式,并求出函数的定义域;
(Ⅱ)求当x为多少时,容器的容积最大?并求出最大容积。
已知抛物线与直线
相切于点
.
(Ⅰ)求的解析式;
(Ⅱ)若对任意,不等式
恒成立,求实数
的取值范围.
在平面上有一系列点
对每个自然数
,点
位于函数
的图象上.以点
为圆心的⊙
与
轴都相切,且⊙
与⊙
又彼此外切.若
,且
.
(1)求证:数列是等差数列;
(2)设⊙的面积为
,
, 求证:
如图直角梯形OABC中,,SO=1,以OC、OA、OS分别为x轴、y轴、z轴建立直角坐标系O-xyz.
(Ⅰ)求的大小(用反三角函数表示);
(Ⅱ)设
①
②OA与平面SBC的夹角(用反三角函数表示);
③O到平面SBC的距离.
(Ⅲ)设
①.
②异面直线SC、OB的距离为.
(注:(Ⅲ)只要求写出答案).
同时抛掷15枚均匀的硬币一次
(1)试求至多有1枚正面向上的概率;
(2)试问出现正面向上为奇数枚的概率与出现正面向上为偶数枚的概率是否相等?
请说明理由.
如图,设抛物线方程为 , 为直线 上任意一点,过 引抛物线的切线,切点分别为 .
(Ⅰ)求证:
三点的横坐标成等差数列;
(Ⅱ)已知当
点的坐标为
时,
,求此时抛物线的方程;
(Ⅲ)是否存在点
,使得点
关于直线
的对称点
在抛物线
上,其中,点
满足
(
为坐标原点).若存在,求出所有适合题意的点
的坐标;若不存在,请说明理由.