把边长为a的等边三角形铁皮如图(1)剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的底面为正三角形的直棱柱形容器(不计接缝)如图(2),设容器的高为x,容积为。
(Ⅰ)写出函数的解析式,并求出函数的定义域;
(Ⅱ)求当x为多少时,容器的容积最大?并求出最大容积。
(本小题满分10分)在直角坐标系xOy中,曲线C1(t为参数,t≠0),
其中0≤<π,在以O为极点, x轴正半轴为极轴的极坐标系中,曲线
C2 : ,C3 :
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.
(本小题满分10分)选修4—5:不等式选讲
已知.
(1)关于的不等式
恒成立,求实数
的取值范围;
(2)设,且
,求证:
.
(本小题满分10分)选修4—4:极坐标与参数方程
在直角坐标系中,直线
的参数方程为
(
为参数).再以原点为极点,以
正半轴为极轴建立极坐标系,并使得它与直角坐标系
有相同的长度单位.在该极坐标系中圆
的方程为
.
(1)求圆的直角坐标方程;
(2)设圆与直线
交于点
、
,若点
的坐标为
,求
的值.
(本小题满分10分)选修4—1:几何证明选讲
如图,正方形边长为2,以
为圆心、
为半径的圆弧与以
为直径的半圆
交于点
,连结
并延长交
于点
.
(1)求证:;
(2)求的值.
(本小题满分12分)已知函数.
(Ⅰ)设,求
的单调区间;
(Ⅱ) 设,且对于任意
,
.试比较
与
的大小.