把边长为a的等边三角形铁皮如图(1)剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的底面为正三角形的直棱柱形容器(不计接缝)如图(2),设容器的高为x,容积为。(Ⅰ)写出函数的解析式,并求出函数的定义域;(Ⅱ)求当x为多少时,容器的容积最大?并求出最大容积。
(本小题满分12分已知的内角、、的对边分别为、、,,且 (1)求角; (2)若向量与共线,求、的值.
(本小题满分12分) 已知,设= (1).求的最小正周期和单调递减区间; (2)设关于的方程=在有两个不相等的实数根,求的取值范围.
(10分) 测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高。
设且. (I)当时,求实数的取值范围; (II)当时,求的最小值.
已知函数f (x )=ax 3 + x2 + 2( a ≠ 0 ) . (Ⅰ) 试讨论函数f (x )的单调性; (Ⅱ) 若a>0,求函数f (x ) 在[1,2]上的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号