已知关于的不等式
的解集为
。
(1)当时,求集合
;
(2)若,求实数
的取值范围。
(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求三棱锥E—ABC的体积V.
在二项式的展开式中,前三项系数的绝对值成等差数列
(1)求展开式的第四项;
(2)求展开式的常数项;
(3)求展开式中各项的系数和.
如图,圆柱内有一个三棱柱
,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径。
(Ⅰ)证明:平面平面
;
(Ⅱ)设AB=,在圆柱
内随机选取一点,记该点取自于三棱柱
内的概率为
。
(i)当点C在圆周上运动时,求的最大值;
(ii)记平面与平面
所成的角为
,当
取最大值时,求
的值。
设是不等式
的解集,整数
。
(1)记使得“成立的有序数组
”为事件A,试列举A包含的基本事件;
(2)设,求
的分布列及其数学期望
。
已知是否存在自然数
,使对任意
,都有
整除
?如果存在,求出
的最大值,并证明;若不存在,说明理由.