已知函数,
.
(Ⅰ)解不等式;
(Ⅱ)若,试求
的最小值.
在平面直角坐标系中,直线
的参数方程为:
(
为参数).以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求曲线的平面直角坐标方程;
(Ⅱ)设直线与曲线
交于点
,若点
的坐标为
,求
的值.
如图,单位正方形区域在二阶矩阵
的作用下变成平行四边形
区域.
(Ⅰ)求矩阵;
(Ⅱ)求,并判断
是否存在逆矩阵?若存在,求出它的逆矩阵.
已知函数,
,且函数
在点
处的切线方程为
.
(Ⅰ)求函数的解析式;
(Ⅱ)设点,当
时,直线
的斜率恒小于
,试求实数
的取值范围;
(Ⅲ)证明:.
如图,四棱柱中,
平面
.
(Ⅰ)从下列①②③三个条件中选择一个做为的充分条件,并给予证明;
①,②
;③
是平行四边形.
(Ⅱ)设四棱柱的所有棱长都为1,且
为锐角,求平面
与平面
所成锐二面角
的取值范围.