一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A,B,C在圆O的圆周上,其正(主)视图,侧(左)视图的面积分别为10和12,如图所示,其中EA⊥平面ABC,AB⊥AC,AB=AC.AE=2.(1)求证:AC⊥BD.(2)求三棱锥E-BCD的体积.
(本小题满分12分) (1)求直线被双曲线截得的弦长; (2)求过定点的直线被双曲线截得的弦中点轨迹方程。
已知集合在平面直角坐标系中,点的横、纵坐标满足。 (1)请列出点的所有坐标; (2)求点不在轴上的概率; (3)求点正好落在区域上的概率。
设函数的定义域为集合,集合. 请你写出一个一元二次不等式,使它的解集为,并说明理由。
已知直线被两平行直线和所截得的线段长为9,且直线过点,求直线的方程.
直线与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线的方程. (1)过定点. (2)与直线垂直.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号