一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A,B,C在圆O的圆周上,其正(主)视图,侧(左)视图的面积分别为10和12,如图所示,其中EA⊥平面ABC,AB⊥AC,AB=AC.AE=2.
(1)求证:AC⊥BD.
(2)求三棱锥E-BCD的体积.
(本小题满分12分)
设双曲线的方程为
,
、
为其左、右两个顶点,
是双曲线
上的任意一点,作
,
,垂足分别为
、
,
与
交于点
.
(1)求点的轨迹
方程;
(2)设、
的离心率分别为
、
,当
时,求
的取值范围.
(本小题满分12分)
己知圆C: (x – 2 )2 + y 2 =" 9," 直线l:x + y = 0.
(1) 求与圆C相切, 且与直线l平行的直线m的方程;
(2) 若直线n与圆C有公共点,且与直线l垂直,求直线n在y轴上的截距b的取值范围;
(本小题满分10分)
命题p:对任意实数都有
恒成立;命题q:关于
的方程
有实数根.若“p或q”为真命题,“p且q”为假命题,求实数
的取值范围。
(本小题满分12分)
如图,已知点B在以AC为直径的圆上,SA⊥面ABC,AE⊥SB于E,AF⊥SC于F.
(I)证明:SC⊥EF;
(II)若求三棱锥S—AEF的体积.
(本小题满分12分)
已知函数,若
,则称
为
的“不动点”;若
,则称
为
的“稳定点”。记集合
(1)已知,若
是在
上单调递增函数,是否有
?若是,请证明。
(2)记表示集合
中元素的个数,问:
若函数
,若
,则
是否等于0?若是,请证明
若
,试问:
是否一定等于1?若是,请证明