某食品公司为了解某种新品种食品的市场需求,进行了20天的测试,人为地调控每天产品的单价P(元/件):前10天每天单价呈直线下降趋势(第10天免费赠送品尝),后10天呈直线上升,其中4天的单价记录如表:
时间(将第x天记为x)x |
1 |
10 |
11 |
18 |
单价(元/件)P |
9 |
0 |
1 |
8 |
而这20天相应的销售量Q(百件/天)与x对应的点(x,Q)在如图所示的半圆上.
(1)写出每天销售收入y(元)与时间x(天)的函数关系式y=f(x).
(2)在这20天中哪一天销售收入最高?为使每天销售收入最高,按此次测试结果应将单价P定为多少元为好?(结果精确到1元)
已知数列为等比数列,其前
项和为
,且满足
成等差数列.
(1)求数列的通项公式;
(2)已知,记
,求数列
前
项和
.
某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.
用煤(吨) |
用电(千瓦) |
产值(万元) |
|
甲产品 |
7 |
20 |
8 |
乙产品 |
3 |
50 |
12 |
但国家每天分配给该厂的煤、电有限,每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产量最大?最大日产量为多少?
已知;
,若
是
的充分而不必要条件,求实数
的范围.
已知A点坐标为,B点坐标为
,且动点
到
点的距离是
,线段
的
垂直平分线交线段
于点
.
(1)求动点的轨迹C方程.
(2)若P是曲线C上的点,,求的最大值和最小值.
已知F1、F2是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足
(O是坐标原点),
若椭圆的离心率等于
(1)求直线AB的方程;
(2)若三角形ABF2的面积等于,求椭圆的方程.