已知数列 { a n } : a 1 = 1 , a 2 = 2 , a 3 = r , a n + 3 = a n + 2 ( n 是正整数),与数列 { b n } : b 1 = 1 , b 2 = 0 , b 3 = - 1 , b 4 = 0 , b n + 4 = b n ( n 是正整数).记 T n = b 1 a 1 + b 2 a 2 + b 3 a 3 + . . . + b n a n . (1)若 a 1 + a 2 + a 3 + . . . + a 12 = 64 ,求 r 的值; (2)求证:当 n 是正整数时, T 128 = - 4 n ; (3)已知 r > 0 ,且存在正整数 m ,使得在 T 12 m + 1 , T 12 m + 2 , . . . , T 12 m + 12 中有4项为100.求 r 的值,并指出哪4项为100.
函数的定义域为集合A,函数的定义域为集合B. (1)求A; (2)若BA,求实数的取值范围。
已知(). ⑴求的单调区间; ⑵若在内有且只有一个极值点, 求a的取值范围.
已知椭圆的中心在坐标原点,离心率为,一个焦点是F(0,1). (Ⅰ)求椭圆方程; (Ⅱ)直线过点F交椭圆于A、B两点,且,求直线的方程.
已知函数 (Ⅰ)当时,求函数的最小值; (Ⅱ)若对任意,恒成立,试求实数的取值范围.
已知各项均为正数的数列,的等比中项。 (1)求证:数列是等差数列; (2)若的前n项和为Tn,求Tn。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号