有一批大小不等、形状相同的工艺品,下部是一个正方体,上部是一个球体,且正方体的棱长是球半径的2倍.现要求该工艺品的体积不超过100 cm2,请设计一个算法,检验工艺品是否合格.
已知在等比数列中,
,且
是
和
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足
,求
的前
项和
.
已知函数,
.
(Ⅰ)若曲线在
与
处的切线相互平行,求
的值及切线斜率;
(Ⅱ)若函数在区间
上单调递减,求
的取值范围;
(Ⅲ)设函数的图像C1与函数
的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1、C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.
已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得
始终平分
?若存在求出
点坐标;若不存在请说明理由.
如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,AD
DC,AB=AD=1,DC=SD=2,E为棱SB上任一点.
(Ⅰ)求证:无论E点取在何处恒有;
(Ⅱ)设,当平面EDC
平面SBC时,求
的值;
(Ⅲ)在(Ⅱ)的条件下求二面角的大小.
现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(I)求张同学至少取到1道乙类题的概率;
(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是
,且各题答对与否相互独立.用
表示张同学答对题的个数,求
的分布列和数学期望.