在正三角形中,
、
、
分别是
、
、
边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△
沿
折起到
的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)
(Ⅰ)求证:A1E⊥平面BEP;
(Ⅱ)求直线A1E与平面A1BP所成角的大小;
(Ⅲ)求二面角B-A1P-F的大小(用反三角函数表示)
如图,已知四边形和
都是菱形,平面
和平面
互相垂直,且
.
(Ⅰ)求证:
(Ⅱ)求四面体的体积.
如图,在平面直角坐标系xOy中,平行于轴且过点
(3,2)的入射光线
被直线
反射.反射光线
交
轴于
点,圆
过点
且与
都相切.
(1)求所在直线的方程和圆
的方程;
(2)设分别是直线
和圆
上的动点,求
的最小值及此时点
的坐标.
如图,在正三棱柱中,
分别为
中点.
(1)求证:平面
;
(2)求证:平面平面
.
如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积;
(Ⅱ)试问在边上是否存在点N,使
平面
? 若存在,确定点N的位置(不需证明);若不存在,请说明理由.
已知命题和命题
,若
是
的必要不充分条件,求实数
的取值范围.