游客
题文

椐统计从化机械厂生产一种汽车曲轴,由于受生产能力和技术水平的限制,会产生一些次品,该厂生产这种产品的次品率与日产量x(单位:件)之满足关系
。已知每生产一件合格品可盈利3000元,但每生产一件次品将亏损1500元。
(Ⅰ)判断日产量x超过94时,生产这种产品能否盈利?并说明理由;
(Ⅱ)当日产量x不超过94时,将该厂生产这种产品每天的盈利额y(元)表示成日产量x的函数;为了获得最高日盈利额,日产量应定为多少件?

科目 数学   题型 解答题   难度 较难
知识点: 三面角、直三面角的基本性质
登录免费查看答案和解析
相关试题

(请考生在题22,23,24中任选一题作答,如果多做,则按所做的第一题计分。)
(本小题满分10分)设函数
(1)求函数的值域;
(2)若,求成立时的取值范围。

(请考生在题22,23,24中任选一题作答,如果多做,则按所做的第一题计分。)
(本小题满分10分)已知圆锥曲线是参数)和定点,F1、F2是圆锥曲线的左、右焦点。
(1)求经过点F2且垂直地于直线AF1的直线的参数方程;
(2)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求直线AF2的极坐标方程。

(请考生在题22,23,24中任选一题作答,如果多做,则按所做的第一题计分。)
(本小题满分10分)如图5,⊙O1和⊙O2公切线AD和BC相交于点D,A、B、C为切点,直线DO1与⊙O1与E、G两点,直线DO2交⊙O2与F、H两点。

(1)求证:
(2)若⊙O1和⊙O2的半径之比为9:16,求的值。

(本小题满分12分)已知函数
(1)设两曲线有公共点,且在公共点处的切线相同,若,试建立关于的函数关系式;
(2)在(1)的条件下求的最大值;
(3)若时,函数在(0,4)上为单调函数,求的取值范围。

(本小题满分12分)已知定点C(-1,0)及椭圆,过点C的动直线与椭圆相交于A,B两点。
(1)若线段AB中点的横坐标是,求直线AB的方程;
(2)在轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号