(本小题满分14分)
在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于
坐标原点O.椭圆与圆C的一个交点到椭圆两焦点的距离之和为10。
(1)求圆C的方程; (2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段
OF的长,若存在求出Q的坐标;若不存在,请说明理由。
袋中有1个红球,2个白球,3个黑球,现从中任取一球观察其颜色.确定这个随机试验中的随机变量,并指出在这个随机试验中随机变量可能取的值及取每个值的概率.
一批零件中有9个合格品与3个不合格品.安装机器时,从这批零件中任取一个.如果每次取出的不合格品不再放回去,求在取得合格品以前已取出的不合格品数的分布列.
一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以表示取出的3只球中的最大号码,写出随机变量
的分布列.
盒中装有大小相等的球10个,编号分别为0,1,2,…,9,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一.规定一个随机变量,并求其概率分布列.
已知随机变量的分布列为
![]() |
-2 |
-1 |
0 |
1 |
2 |
3 |
P |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
分别求出随机变量的分布列.