(本小题满分12分)数列满足,是常数.(1)数列是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(2)求的取值范围,使得存在正整数,当时总有.
已知函数,. (1)求函数的极值; (2)若在上恒成立,求的取值范围.
如图,设抛物线方程为,为直线上任意一点,过引抛物线的切线,切点分别为. (1)求证:三点的横坐标成等差数列; (2)已知当点的坐标为时,.求此时抛物线的方程。
(本小题12分) 已知为实数,, (1)若,求的单调区间; (2)若,求在[-2,2] 上的最大值和最小值。
已知曲线上任意一点到两个定点,的距离之和为4. (1)求曲线的方程; (2)设过(0,-2)的直线与曲线交于两点,且(为原点),求直线的方程.
已知,且。 求证:中至少有一个是负数。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号