(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
已知二次函数对任意
均有
成立,且函数的图像过点
.
(1)求函数的解析式;
(2)若不等式的解集为
,求实数
的值.
已知三次函数在
和
时取极值,且
.
(Ⅰ) 求函数的表达式;
(Ⅱ)求函数的单调区间和极值;
(Ⅲ)若函数在区间
上的值域为
,试求
、n应满足的条件。
设是平面上的两个向量,且
互相垂直.
(1)求λ的值;
(2)若求
的值.
已知数集
具有性质
;对任意的
,
与
两数中至少有一个属于
。
(Ⅰ)分别判断数集
与
是否具有性质
,并说明理由;
(Ⅱ)证明:
,且
;
(Ⅲ)证明:当
时,
成等比数列。
如图,设抛物线方程为x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.
(Ⅰ)求证:A,M,B三点的横坐标成等差数列;
(Ⅱ)已知当M点的坐标为(2,-2p)时,,求此时抛物线的方程;
(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足
(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.
在平面上有一系列点
对每个自然数
,点
位于函数
的图象上.以点
为圆心的⊙
与
轴都相切,且⊙
与⊙
又彼此外切.若
,且
.
(1)求证:数列是等差数列;
(2)设⊙的面积为
,
, 求证: