(本小题满分14分)
设函数
(1)若函数在x=1处与直线
相切
①求实数a,b的值;
②求函数上的最大值.
(2)当b=0时,若不等式对所有的
都成立,求
实数m的取值范围.
(本小题满分14分)已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4
(Ⅰ)求异面直线GE与PC所成角的余弦值;
(Ⅱ)若F点是棱PC上一点,且,
,求
的值.
(本小题满分14分)已知正项数列满足:
,
(1)求通项;
(2)若数列满足
,求数列
的前
项和.
设函数
(1)求函数的周期和单调递增区间;
(2)设A,B,C为ABC的三个内角,若AB=1,
,
,求s1nB的值.
已知函数
(1)若曲线在点
处的切线与直线
平行,求
的值;
(2)求证函数在
上为单调增函数;
(3)设,
,且
,求证:
.
已知椭圆C:+
=1
的离心率为
,左焦点为F(-1,0),
(1)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若,求直线L的方程;
(2)椭圆C上是否存在三点P,E,G,使得S△OPE=S△OPG=S△OEG=?