设函数 f ( x ) = a x 3 + b x 2 - 3 a 2 x + 1 ( a , b ∈ R ) 在 x = x 1 , x = x 2 处取得极值,且 x 1 - x 2 = 2 . (Ⅰ)若 a = 1 ,求 b 的值,并求 f ( x ) 的单调区间; (Ⅱ)若 a > 0 ,求 b 的取值范围.
已知:,: 且是的必要不充分条件,求实数的取值范围。
写出命题“乘积为奇数的两个整数都不是偶数”的逆命题、否命题、逆否命题,并判断真假.
若x、y、z均为实数,且a=x2-2y+,b=y2-2z+,c=z2-2x+,则a、b、c中是否至少有一个大于零?请说明理由.
用反证法证明: 设三个正实数a、b、c满足条件=2求证:a、b、c中至少有两上不小于1.
若a、b、c∈R,写出命题“若ac<0,则ax2+bx+c=0有两个不相等的实数根”的逆命题、否命题、逆否命题,并判断这三个命题的真假
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号