(本小题满分12分) 如图,在三棱锥中,
,
为
的中点.
(1)求证:面
;
(2)求异面直线与
所成角的余弦值.
(本小题满分12分)已知圆,直线
,
与圆
交与
两点,点
.
(1)当时,求
的值;
(2)当时,求
的取值范围.
(本小题满分10分)
已知函数(其中
,
)的最小正周期为
.
(1)求的值;
(2)在△中,若
,且
,求
.
(本小题满分14分)
设函数,其中
.
(Ⅰ)当时,判断函数
在定义域上的单调性;
(Ⅱ)求函数的极值点;
(Ⅲ)证明对任意的正整数,不等式
都成立.
如图,在平面直角坐标系中,过
轴正方向上一点
任作一直线,与抛物线
相交于
两点.一条垂直于
轴的直线,分别与线段
和直线
交于点
.
(1)若,求
的值;
(2)若为线段
的中点,求证:
为此抛物线的切线;
(3)试问(2)的逆命题是否成立?说明理由.