游客
题文

(本大题9分)袋中有2个红球,n个白球,各球除颜色外均相同.已知从袋中摸出2个球均为白球的概率为,(Ⅰ)求n;(Ⅱ)从袋中不放回的依次摸出三个球,记ξ为相邻两次摸出的球不同色的次数(例如:若取出的球依次为红球、白球、白球,则ξ=1),求随机变量ξ的分布列及其数学期望Eξ.

科目 数学   题型 解答题   难度 中等
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

已知函数 f ( x ) = ( x - 1 ) ln x - x - 1 .证明:

(1) f ( x ) 存在唯一的极值点;

(2) f ( x ) = 0 有且仅有两个实根,且两个实根互为倒数.

已知 F 1 , F 2 是椭圆 C : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的两个焦点,P为C上一点,O为坐标原点.

(1)若 PO F 2 为等边三角形,求C的离心率;

(2)如果存在点P,使得 P F 1 P F 2 ,且 F 1 P F 2 的面积等于16,求b的值和a的取值范围.

某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率 y的频数分布表.

y 的分组

[ - 0.20,0 )

[ 0,0.20 )

[ 0.20,0.40 )

[ 0.40,0.60 )

[ 0.60,0.80 )

企业数

2

24

53

14

7

(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;

(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)

附: 74 8 . 602 .

已知 { a n } 是各项均为正数的等比数列, a 1 = 2 , a 3 = 2 a 2 + 16 .

(1)求 { a n } 的通项公式;

(2)设,求数列 { b n } 的前n项和.

如图,长方体 ABCD- A 1 B 1 C 1 D 1的底面 ABCD是正方形,点 E在棱 AA 1上, BEEC 1.

(1)证明: BE⊥平面 EB 1 C 1

(2)若 AE= A 1 EAB=3,求四棱锥 E - B B 1 C 1 C 的体积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号