游客
题文

已知椭圆的离心率为,右焦点也是抛物线的焦点。     
(1)求椭圆方程;
(2)若直线相交于两点。
①若,求直线的方程;
②若动点满足,问动点的轨迹能否与椭圆存在公共点?若存在,求出点的坐标;若不存在,说明理由。

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知函数
(1)将写成的形式,并求其图象对称中心的横坐标;
(2)如果的三边满足,且边所对的角为,试求的范围及此时函数的值域.

(本小题满分14分)设集合
(1)若,求实数的值;(2)求

(本小题满分16分)已知函数是不同时为零的常数),导函数为
(1)当时,若存在,使得成立,求的取值范围;
(2)求证:函数内至少有一个零点;
(3)若函数为奇函数,且在处的切线垂直于直线,关于的方程,在上有且只有一个实数根,求实数的取值范围.

(本小题满分16分)已知数列,其中,,数列的前项和,数列满足
(1)求数列的通项公式;
(2)是否存在自然数,使得对于任意恒成立?若存在,求出的最小值;
(3)若数列满足,求数列的前项和

(本小题满分15分)为合理用电缓解电力紧张,某市将试行“峰谷电价”计费方法,在高峰用电时段,即居民户每日8时至22时,电价每千瓦时为0.56元,其余时段电价每千瓦时为0.28元.而目前没有实行“峰谷电价”的居民用户电价为每千瓦时为0.53元.若总用电量为千瓦时,设高峰时段用电量为千瓦时.
(1)写出实行峰谷电价的电费及现行电价的电费的函数解析式及电费总差额的解析式;
(2)对于用电量按时均等的电器(在全天任何相同长的时间内,用电量相同),采用峰谷电价的计费方法后是否能省钱?说明你的理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号